Journal of Liaoning Petrochemical University
  Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Study on Mechanism of Thiophene Alkylation Reaction on Hβ Zeolites by In⁃Situ Infrared Spectroscopy
Xiangbo Sun, Yu Hui, Jingwei Zhang, Zhiying Li, Yucai Qin, Lijuan Song
Abstract111)   HTML8)    PDF (2974KB)(165)      

The adsorption competitive adsorption and conversion behaviors of thiophene and 1?hexene on Hβ molecular sieve have been studied by using the method of in?situ infrared spectroscopyThe roles of different acidic sites in the alkylation reaction of thiophene and olefin molecule were systematically discussed. The results show that 1?hexene is preferentially adsorbed on the B acid sites, and it s easy to dimerize through protonation activation. Thus,there is a significant competitive relationship between the adsorption of thiophene molecules and the protonation reaction process. Moreover, it can be confirmed that the adsorbed thiophene molecule on non?framework aluminum on zeolite are more likely to its alkylation with a protonation 1?hexene molecule near the center of the B acidThis results can provide basic theoretical guidance for the development of zeolite catalysts for alkylation desulfurization processes.

2023, 43 (4): 66-71. DOI: 10.12422/j.issn.1672-6952.2023.04.010
Grand Canonical Monte Carlo Simulation of Adsorption and Separation Performances of CO 2/CH 4 by NaX Zeolite
Jing Zhao, Tianyi Liu, Qiang Li, Xiaoxin Zhang, Yucai Qin, Lijuan Song
Abstract197)   HTML7)    PDF (2432KB)(349)      

In this paper, the method of combining Grand Canonical Monte Carlo simulation and Ideal Adsorption Solution Theory was used to study the adsorption performance of CO2 and CH4 on NaX zeolite. By comparing the fitting results of simulation data under different adsorption theoretical models and calculating the adsorption heat, a description of the adsorption and separation process of CO2 and CH4 gas was obtained. The results show that the adsorption strength of CH4 molecules is weaker than that of CO2 molecules, and its adsorption is closer to the ideal adsorption. The adsorption selectivity of CO2 molecules is decreases with the increase of its content in the air, and decreases with the increase of temperature under low pressure conditions. Therefore, low temperature and low pressure are more conducive to the separation of CO2 molecules.

2023, 43 (2): 13-19. DOI: 10.12422/j.issn.1672-6952.2023.02.003
Preparation of Highly Dispersed WO x /SiO 2 Catalyst and Its Performance in Olefin Disproportionation Reaction
Qiang Zhang, Haoxuan Tan, Yuchao Cui, Huan Wang, Xiaotong Zhang, Lijuan Song
Abstract205)   HTML7)    PDF (2002KB)(143)      

This paper carried out the screening of WO x /SiO2 catalyst carrier and the investigation of WO x loading capacity, and successfully screened a domestic SiO2 carrier with excellent performance. The structure and properties of the catalyst were characterized by nitrogen physical adsorption, XRD, Raman spectroscopy and TEM/EDS. The dispersion of WO x species on the carrier was mainly investigated, the catalytic reaction performance of disproportionation of ethylene and butene to propylene was investigated, and the performance was compared with that of a foreign commercial catalyst. The research results show that the WO x loading threshold of the domestic carrier S?SiO2 is 8%. At this time, the catalyst shows the best catalytic activity and selectivity. Compared with the catalytic performance of the comparative commercial catalyst, the catalyst activity is nearly 10% higher, and the stability and selectivity are equivalent, and the correlation structure characterization results can confirm that the dispersion characteristics of WO x species on the support are the key factors that affect the catalytic performance, while the SiO2 support and loading are both the key to the dispersion state of WO x species. This study can provide a basis for the localization of WO x /SiO2 catalysts for high?efficiency olefin disproportionation reactions, especially the selection of domestic SiO2 carriers.

2022, 42 (5): 32-37. DOI: 10.3969/j.issn.1672-6952.2022.05.005